Intra-retinal layer segmentation in optical coherence tomography images.
نویسندگان
چکیده
Retinal layer thickness, evaluated as a function of spatial position from optical coherence tomography (OCT) images is an important diagnostics marker for many retinal diseases. However, due to factors such as speckle noise, low image contrast, irregularly shaped morphological features such as retinal detachments, macular holes, and drusen, accurate segmentation of individual retinal layers is difficult. To address this issue, a computer method for retinal layer segmentation from OCT images is presented. An efficient two-step kernel-based optimization scheme is employed to first identify the approximate locations of the individual layers, which are then refined to obtain accurate segmentation results for the individual layers. The performance of the algorithm was tested on a set of retinal images acquired in-vivo from healthy and diseased rodent models with a high speed, high resolution OCT system. Experimental results show that the proposed approach provides accurate segmentation for OCT images affected by speckle noise, even in sub-optimal conditions of low image contrast and presence of irregularly shaped structural features in the OCT images.
منابع مشابه
Intra-retinal Layer Segmentation in Optical Coherence Tomography Using an Active Contour Approach
Optical coherence tomography (OCT) is a non-invasive, depth resolved imaging modality that has become a prominent ophthalmic diagnostic technique. We present an automatic segmentation algorithm to detect intra-retinal layers in OCT images acquired from rodent models of retinal degeneration. We adapt Chan-Vese's energy-minimizing active contours without edges for OCT images, which suffer from lo...
متن کاملUser-guided segmentation for volumetric retinal optical coherence tomography images.
Despite the existence of automatic segmentation techniques, trained graders still rely on manual segmentation to provide retinal layers and features from clinical optical coherence tomography (OCT) images for accurate measurements. To bridge the gap between this time-consuming need of manual segmentation and currently available automatic segmentation techniques, this paper proposes a user-guide...
متن کاملSpeckle Noise Reduction for the Enhancement of Retinal Layers in Optical Coherence Tomography Images
Introduction One of the most important pre-processing steps in optical coherence tomography (OCT) is reducing speckle noise, resulting from multiple scattering of tissues, which degrades the quality of OCT images. Materials and Methods The present study focused on speckle noise reduction and edge detection techniques. Statistical filters with different masks and noise variances were applied on ...
متن کاملNovel interactive approach to intra-retinal layer segmentation from optical coherence tomography images
Retinal layer thickness, evaluated as a function of spatial position from optical coherence tomography (OCT) images is an important diagnostics marker for many retinal diseases. However, due to factors such as speckle noise, low image contrast, irregularly shaped morphological features such as retinal detachments, macular holes, and drusen, accurate segmentation of individual retinal layers is ...
متن کاملAutomated Retinal Layer Segmentation Using Spectral Domain Optical Coherence Tomography: Evaluation of Inter-Session Repeatability and Agreement between Devices
Retinal and intra-retinal layer thicknesses are routinely generated from optical coherence tomography (OCT) images, but on-board software capabilities and image scaling assumptions are not consistent across devices. This study evaluates the device-independent Iowa Reference Algorithms (Iowa Institute for Biomedical Imaging) for automated intra-retinal layer segmentation and image scaling for th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Optics express
دوره 17 26 شماره
صفحات -
تاریخ انتشار 2009